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Abstract

We present a single closed-form expression that reproduces the standard round-to-nearest integer

function on the real line and extends naturally to the complex plane. The formula

Round(z) = z+
ln(e2πiz)

2π
· i

where ln denotes the principal branch logarithm, maps each vertical strip k− 1
2 < Re(z)≤ k+ 1

2

holomorphically to the integer k. The branch cut of the logarithm coincides precisely with

the classical half-integer tie points where the round-to-nearest function is discontinuous. We

prove the equivalence on the real axis, analyze the complex extension, and demonstrate how

repositioning the branch cut generates other rounding variants through the same analytic

framework.

1 Introduction

The round-to-nearest integer function is traditionally defined as the piecewise expression

x 7→ ⌊x+
1
2
⌋ (1)

which exhibits discontinuities at half-integer values and resists smooth analytic treatment.

In this paper, we show that the same rounding behavior can be captured by a closed-form,
complex-analytic formula

Round(z) = z+
ln(e2πiz)

2π
· i (2)
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where ln denotes the logarithm on the principal branch. This representation has several interesting
properties: it reproduces the classical round-to-nearest function on real inputs, extends naturally to
the complex plane, and unifies multiple rounding modes through branch cut manipulation.

The key insight is that the discontinuities of the rounding function correspond exactly to the
branch cut of the complex logarithm. By shifting this branch cut, we can transform between different
rounding behaviors—including floor and ceiling rounding—without altering the underlying analytic
structure.

Our main contributions are: (1) a proof that formula (2) reproduces standard rounding on R,
(2) an analysis of its complex extension showing that vertical strips collapse to integers, and (3) a
complete characterization of how branch cut variations generate different rounding modes.

2 Real Axis Analysis

We begin by establishing that our complex-analytic formula reproduces the standard rounding
function on real inputs.

Theorem 2.1. For every real number x /∈ Z+ 1
2 ,

Round(x) =
⌊

x+
1
2

⌋
. (3)

Proof. Let x ∈R\(Z+ 1
2) and write e2πix = eiθ where θ is the argument of the complex exponential.

Since x is not a half-integer, the point e2πix does not lie on the negative real axis, so the principal
branch logarithm is well-defined.

Define k = ⌊x+ 1
2⌋. Then x ∈ (k− 1

2 ,k+
1
2), which implies 2πx ∈ (2πk−π,2πk+π). We can

therefore write
θ = 2πx−2πk ∈ (−π,π), (4)

placing θ in the principal argument range.

Since ln(eiθ ) = iθ on the principal branch, we have

ln(e2πix) = i(2πx−2πk) = 2πi(x− k). (5)

Substituting into equation (2) yields

Round(x) = x+
2πi(x− k)

2π
· i = x+ i2(x− k) = x− (x− k) = k =

⌊
x+

1
2

⌋
, (6)
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completing the proof.

Remark 2.2. The function Round(x) is undefined at half-integers x ∈ Z+ 1
2 , where e2πix =−1 lies

on the branch cut of the principal logarithm. This corresponds exactly to the tie points where the
classical round-to-nearest function exhibits its discontinuous jumps.

3 Complex Extension

We now analyze the behavior of Round(z) for complex arguments, showing that it maps vertical
strips to integers while maintaining holomorphicity within each strip.

Lemma 3.1. Let z= x+ iy where x,y∈R, and define k = ⌊x+ 1
2⌋. If Re(z) /∈Z+ 1

2 , then Round(z)=
k.

Proof. We can factor the complex exponential as

e2πiz = e2πi(x+iy) = e−2πy · e2πix. (7)

Since x /∈ Z+ 1
2 , the point e2πix does not lie on the negative real axis. The factor e−2πy > 0 is real

and positive, so e2πiz has the same argument as e2πix.

Following the argument in Theorem 2.1, we adjust the raw argument 2πx by subtracting 2πk to
place it in (−π,π]. The principal branch logarithm then gives

ln(e2πiz) = ln(e−2πy)+ ln(e2πix) =−2πy+2πi(x− k). (8)

Substituting into equation (2), we obtain

Round(z) = z+
−2πy+2πi(x− k)

2π
· i = x+ iy− iy+ i2(x− k) = x− (x− k) = k. (9)

Theorem 3.2. For each integer k, the function Round(z) is constant and holomorphic on the open

vertical strip {z∈C : k− 1
2 <Re(z)< k+ 1

2}, where it takes the value k. The function is non-analytic

only on the vertical lines Re(z) ∈ Z+ 1
2 .

Proof. The first statement follows immediately from Lemma 3.1 and the fact that constant functions
are holomorphic with derivative zero.
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For the second statement, note that Round(z) is undefined when e2πiz lies on the negative real axis,
which occurs precisely when Re(z) ∈ Z+ 1

2 . These are the branch lines of the principal logarithm
in our parametrization.

4 Branch Cut Variants and Rounding Modes

The principal branch logarithm can be replaced with other branch choices to achieve different
rounding behaviors. This section provides a complete analysis of how branch cut positioning
controls the resulting rounding mode.

Definition 4.1. For any real parameter α , let lnα denote the logarithm with argument range
(α −π,α +π]. Define the α-parameterized rounding function as

Roundα(z) = z+
lnα(e2πiz)

2π
· i. (10)

Theorem 4.2. The α-parameterized rounding function Roundα has the following properties:

1. Discontinuity set: Roundα is discontinuous at z where Re(z) ∈ α

2π
− 1

2 +Z.

2. Rounding formula: For real x not in the discontinuity set,

Roundα(x) =
⌊

x− α

2π
+

1
2

⌋
. (11)

3. Special cases:

α = 0 : Round0(x) =
⌊

x+
1
2

⌋
(round-to-nearest) (12)

α = π : Roundπ(x) = ⌊x⌋ (floor function) (13)

α =−π : Round−π(x) = ⌈x⌉ (ceiling function) (14)

Proof. Part 1: The α-branch logarithm has discontinuities where the argument equals α − π

or α + π . For real x, this occurs when 2πx ≡ α − π (mod 2π), giving x ≡ α−π

2π
(mod 1), or

equivalently x ∈ α

2π
− 1

2 +Z.

Part 2: For x not in the discontinuity set, we write 2πx = 2πk + θ where k ∈ Z and θ ∈
(α −π,α +π]. This gives x = k+ θ

2π
with θ

2π
∈
(

α−π

2π
, α+π

2π

]
.

Setting β = α

2π
, we have x ∈ (k+β − 1

2 ,k+β + 1
2 ], so k = ⌊x−β + 1

2⌋.

4



Since lnα(e2πix) = iθ = 2πi(x− k), substitution into equation (10) yields Roundα(x) = k =

⌊x− α

2π
+ 1

2⌋.

Part 3: Direct substitution gives the stated special cases.

Corollary 4.3. The branch cut parameter α shifts the collapse strips horizontally by α

2π
:

α = 0 : strips
(

k− 1
2
,k+

1
2

]
7→ k (15)

α = π : strips (k,k+1] 7→ k (16)

α =−π : strips (k−1,k] 7→ k (17)

Example 4.4. Consider x = 2.7:

Round0(2.7) = ⌊2.7+0.5⌋= 3 (round to nearest) (18)

Roundπ(2.7) = ⌊2.7⌋= 2 (floor) (19)

Round−π(2.7) = ⌈2.7⌉= 3 (ceiling) (20)

The discontinuities occur at different locations: half-integers for α = 0, and integers for α =±π .

5 Conclusion

We have shown that the complex-analytic expression (2) provides a unified framework for under-
standing rounding functions. The key insights are:

1. The discontinuities of rounding functions correspond exactly to branch cuts of the complex
logarithm.

2. Different rounding modes (nearest, floor, ceiling) emerge from the same analytic formula
through branch cut repositioning.

3. The complex extension reveals the geometric structure: vertical strips in C collapse holomor-
phically to integers.

This representation has some practical advantages for certain applications. Unlike piecewise
definitions, our formula is trivially differentiable almost everywhere, making it compatible with
automatic differentiation systems. The parametric family Roundα provides a systematic way to
implement different rounding behaviors within the same analytic framework.
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Future work might explore extensions to other special functions, applications to numerical
optimization, or higher-dimensional generalizations of the strip-collapse phenomenon.
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